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We model the transport of particles present in a fluid steadily flowing through a porous medium. The porous
medium is described by a representative three-dimensional network. The particles are subjected to advection by
the flow and to thermal diffusion. We propose to calculate their trajectories with the continuous time random
walk framework. This enables us to efficiently sample disordered networks with realistic topology. The method
proposed in this paper is general and can be adapted to model dispersion of tracers. It is applied here to
simulate the measurement of the flow propagator P�x ,�t� which is defined as the ensemble density distribution
of tracer displacements x, in a given time interval �t. It can be extracted from pulsed magnetic field gradient
spin echo NMR experiments carried out on porous media while fluid is flowing. Preliminary numerical results
show good qualitative agreement with experiments.
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I. INTRODUCTION

Characterization of the transport of a passive tracer when
it is injected into a fluid flowing in a porous medium remains
a scientific challenge. Its dispersion depends on the structure
of the porous medium in a complex way. This question has
applications in various fields like the migration of contami-
nants in groundwater systems, miscible displacement in en-
hanced petroleum recovery, chromatography, and so on. One
of the difficulties is the imaging of the tracer in the medium.
In the last decade, there has been an increasing body of ex-
periments reporting characterization of flow in rock samples
with NMR techniques that could help in understanding dis-
persion in such porous media. While fluid is steadily flowing,
pulsed field gradient NMR is used to tag the positions of the
fluid’s polarized protons at an initial time t0 and to then ob-
tain the density distribution P�x ,�t� for the displacement x of
the spins at a later time t0+�t �1–8�. The density distribution
of the displacement of spins submitted to advection by the
flow and molecular diffusion is named the flow propagator.
For single-phase flows, the flow propagator carries the sig-
nature of the connected structure of the porous medium.
While the experimental techniques are rapidly developing
with, for instance, two-phase flow propagators �9�, the inter-
pretation of the single-phase flow propagator is still prelimi-
nary.

Computing the flow propagator raises issues similar to
those in the modeling of hydrodynamic front dispersion in
porous media. Only the initial conditions differ. In the first
case, particles are uniformly distributed in the fluid, while in
the second case they are initially organized as a front or
locally distributed patch. The physics of the transport is then
the same. Thus modeling the flow propagator benefits from
the activity in research dealing with the description the dis-
persion of tracer particles �10–12�.

Several approaches have been proposed to describe the
advection-diffusion of passive tracer particles in porous me-

dia. We focus here on network models for porous media
�13–16�. Modeling the pore space with a network of nodes
and bonds enables a numerically efficient calculation of the
flow properties. The particles submitted to advection and dif-
fusion are then tracked in the network �17–21�. An interest-
ing review of dispersion in network models can be found in
�22�. Most of these simulations have been done using regular
networks and standard random walkers. If networks are dis-
ordered or heterogeneous, these methods can be extremely
costly in terms of computing time, in particular because ran-
dom walkers can be trapped in slow flow regions or dead
ends.

Following an approach proposed by several groups,
�22–24�, we use the continuous time random walk frame-
work so as to track particles hopping from node to node in
disordered networks. Other researchers have used this
method to model front dispersion in regular lattices �25,26�.
The specificity of the work presented here is threefold: �i� A
semianalytical expression of the hopping time distribution is
developed which considerably reduces computing time. �ii�
The node to node tracking algorithm is embedded into a
general model adaptable to any network and particles trans-
port. Refinements to the simple model presented here are
proposed if they are needed by specific problems. �iii� The
general algorithm is applied to the calculation of the flow
propagator. Thus we combine the use of porous network and
continuous time random walks to efficiently numerically
model general dispersion problems in heterogeneous porous
media.

In the next section we present a general model for particle
tracking in disordered networks. The third section presents
an application to the calculation of the flow propagator in a
realistic network with a topology extracted from a Berea
sandstone �14�. The last section is devoted to discussion of
the validity of the model and conclusions.
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II. AN EFFICIENT MODEL FOR ADVECTION DIFFUSION
IN POROUS NETWORKS

A. Porous networks with a realistic topology

Networks model the porous space of a porous medium
with an ensemble of nodes connected with bonds. The topol-
ogy of the network can be as simple as a regular lattice,
where the bonds have a fixed length, and set orientations.
Alternatively, it can be disordered with a distribution of bond
lengths, orientations, cross sections, as well as a distribution
of nodes coordination numbers. Several methods are cur-
rently applied to derive a realistic topology from a rock
sample. The topology of the porous space is extracted from
two-dimensional thin sections combined with numerical
modeling of geological processes �14,15,27� or from three-
dimensional microtomographic images of the rock samples
�13,16�. There is currently an important effort towards the
extraction and validation of consistent networks. This discus-
sion is beyond the scope of this paper, and we will focus on
a network already processed by Bakke and Oeren �14� with a
topology representative of a Berea sandstone.

The flow in every bond is classically calculated in porous
network models in the following way: a macroscopic pres-
sure difference is applied between the inlet and the outlet
faces of the network. Poiseuille flow is assumed in every
bond. The conservation of flow at every node gives a linear
system of equations. Solving the system provides the nodal
pressures. By simply rescaling the macroscopic pressure dif-
ference, the network average flow velocity is rescaled to any
desired value.

As a first approach in our particle tracking algorithm, the
flow in every bond is approximated with a mean velocity.
This one-dimensional description of the flow in every bond
enables us to have a semianalytical model. The limits of this
assumption are detailed in the last section.

B. Node to node tracking of particles

Once the mean velocity in every bond is known, particles
are tracked in the network. Between nodes, they move be-
cause of advection and thermal diffusion. The crossing of a
bond is described as a hop from one node to a neighboring
one with a distribution of times calculated for each bond. In
the following section, we present an exact calculation of the
first arrival time distribution �22,23,28,29�.

A central assumption is the complete mixing at the nodes:
a particle at node i is transported to a neighboring node j
independently of the last crossed bond. The nodes are con-
sidered volumeless, that is, no time is spent in the nodes. The
validity of these assumptions is discussed in the last section.

We consider a lattice network of nodes i connected to z
bonds ij of cross section Sij and length lij. The mean velocity
uij is calculated in every bond as described previously. Let
cij�xij , t� be the particle concentration in the bond ij. It satis-
fies the one-dimensional advection-diffusion equation

�tcij + uij�xcij = D�xx
2 cij , �1�

where D is the molecular diffusion.
The quantity describing the transport is the first arrival

time distribution �FATD� pij�t�, that is, the probability for the

particle leaving node i to first reach node j after a time t.
In order to derive the FATD from the concentration for a

node i, one has to solve for all the equations Eq. �1� for the
z bonds ij originating from i with the boundary conditions
�23,29�

cij�lij,t� = 0, for j = 1,z , �2�

cij�0,t� = �i�t� for j = 1,z , �3�

�
j=1

z

Sij�uijcij − D�xcij� = ��t� . �4�

The condition Eq. �3� imposes the same concentration �i at
the onset of the bonds connected to node i. The condition Eq.
�4� indicates that a particle leaves node i at time t=0. The
summation is over the z bonds connected to the node i. Thus,
the probability to first arrive at node j is the flux

pij�t� = Sij�uijcij − D�xcij��lij,t� = − SijD�xcij�lij,t� .

The system consisting of Eq. �1� with the boundary con-
ditions Eqs. �2�–�4� is solved in the Laplace domain. The

Laplace transform of cij�t� is denoted cij
˜ �x ,s�. Thus, z second

order ordinary differential equations for the Laplace trans-

form concentrations cij
˜ �x ,s� are obtained. The general solu-

tion is

cij
˜ �x,s� = Aije

�ijx + Bije
�ijx,

with �ij,�ij = �1/2D��uij ± �uij
2 + 4Ds� �5�

where the 2z coefficient can be determined from the bound-
ary conditions Eqs. �2�–�4�. After several steps, the Laplace
transform of pij�t� is expressed as

pij
˜ �s� = SijD�̃i�s�

�ij − �ij

e−�ijlij − e−�ijlij
,

�̃ i
−1�s� = D�

j=1

z

Sij
�ije

�ijlij − �ije
�ijlij

e�ijlij − e�ijlij
. �6�

The cumulative probability distribution Pij�s� is the prob-
ability to exit via bond ij. It can be calculated by integrating

pij�t� over all times, or with the Laplace transforms P̃ij�s�
= pij�s� /s. The latter relation is used, and with the final value
theorem, we obtain an expression for the the probability to
exit via throat ij:

Pij =
Sij

�
k

Sikuik
1

1 − e−�ik

uij

1 − e−�ij
, �7�

where the Péclet numbers were introduced as �ij =uijlij /D. It
is checked that limit behaviors are consistent. �i� In the con-
vective limit �uik→� for all k, that is, �ik�1�, the probabil-
ity to exit via bond ij described by Eq. �7� is
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Pij = �
0 if uij � 0,

Sijuij

�
k

+

Sikuik

if uij � 0,
�8�

where the sum �k
+ is only on the links ik with a positive

velocity uik�0. Thus when diffusion is negligible, the prob-
ability to exit via tube ij is the ratio of the positive flow rate
through bond ij to the sum of the total positive flow rates
through bonds connected to i. �ii� In the opposite diffusive
limit �uik→0 for all k, that is, �ik�1�, we find that the
probability to exit via tube ij described by Eq. �7� is

Pij =
Sij/lij

�
k

Sik/lik

�9�

The presence of the lengths of the bonds in this expression is
due to the fact that Pij is the probability to exit the bond ij.
�The probability to enter the bond ij in the absence of con-
vection would be Pij

in=Sij /�kSik.�
Thus the model describes the dynamics of particles with

hops from one node to a neighboring node. Equation �7�
gives the probability to first reach each neighboring node,
while Eq. �6� gives the distribution of first arrival times. The
continuous time random walk framework avoids the descrip-
tion of the wandering of the particles due to diffusion before
they reach nodes. For instance, a particle leaving node i, may
wander into bond ik without reaching node k, then go back to
node i, and eventually cross bond ij. With this model, its
wandering is integrated in the first arrival time distribution
pij�t�.

C. Adaptation to front dispersion and flow propagators

The previous section describes the dynamics of a particle
first arriving at a node j coming from a node i and is a
general tracking algorithm. Specific boundary conditions
need to be added at the network scale. Figure 1 is introduced
as a schematic two-dimensional representation of the net-

work. The nodes at one end of the network are connected to
an inlet node I, and those at the other end are connected to an
outlet node O. The total number of internal nodes is denoted
Nnodes.

Let ni�t� be the number of particles that first arrive at node
i per unit time, and nI�t� the number of particles that leave
the inlet node per unit time. As they are volumeless, there is
no accumulation of particles at the internal nodes i: the
fluxes of particles Jik through the bonds connected to i are as
follows in the Laplace domain:

�
k

J̃ik�s� = �
k

p̃ik�s�ñi�s� − p̃ki�s�ñk�s� = 0. �10�

Thus, there are Nnodes linear equations and Nnodes+1 un-
knowns ni�t� and nI�t�. The closure of the system is chosen
depending on the type of dispersion that is modeled.

First, when modeling the dispersion of a tracer front
�24,25�, the closure of the system describes the pulse input of
tracers at the inlet node:

�
k

J̃Ik�s� = 1. �11�

The system defined by Eqs. �10� and �11� is a linear system

that can be directly solved in the Laplace domain. ni
˜ �s� and

nĨ�s� can then be inverted in the time domain. This provides
a very efficient method to compute front dispersion in disor-
dered networks.

Second, when computing the flow propagator, we model a
pulsed magnetic field gradient spin echo NMR experiments,
where the spins of the fluid are excited and tracked during a
time lapse �t. End effects on the core sample during the
experiment are neglected: the volume of fresh fluid without
excited spins that enters the core during the time lapse �t
does not significantly affect the measurements. Surface re-
laxation of the spins is also neglected. With these two as-
sumptions, the concentration of excited spins that are de-
tected, that is, that have not relaxed after �t, is constant over
time and uniform in the fluid. We model the excited spins
with particles hopping from node to node in a network rep-
resentative of the porous medium. The distribution of par-
ticles is kept constant and uniform in the fluid by imposing a
constant flux of particles at the inlet:

�
k

JIk�t� = JI. �12�

Note that the number of particles that first arrive per node per
unit time, ni ,nI, will be constant over time.

The system constituted by the Nnodes equations �10� and
the boundary condition �12� is closed, but cannot be simply
solved, as Eqs. �10� are written in the Laplace domain
whereas Eq. �12� is written in the time domain.

Thus, instead of directly solving this system, we adopt an
equivalent approach: particles are successively tracked in the
network in the time domain. They are initially inserted in the
nodes with an arbitrary distribution ni�t=0�. The constant
flux of particles at the inlet is ensured by reassigning instan-
taneously every particle that reaches the outlet node, into the
inlet node. Within the network, at every node i, the particle is

I O

FIG. 1. Schematic two-dimensional description of the network.
The network has Nnodes+2 nodes. On the inlet and outlet faces, the
nodes are connected to an inlet node and an outlet node. Note that
this is a schematic representation and the simulations are performed
on a three-dimensional network.
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assigned to a neighboring node j with the cumulated prob-
abilities Eq. �7�, and is attributed a time to reach j according
the probability law pij�t�. The number of particles per node
ni�t� rapidly converges to constant values of ni. Once the
numerical model has relaxed, the flow propagator is calcu-
lated as the probability of displacement in a time lapse �t, as
will be shown in the next section.

III. CALCULATION OF THE FLOW PROPAGATORS
IN A BEREA-SANDSTONE-LIKE NETWORK

A. Berea sandstone network

The model is applied to a network with a topology ex-
tracted from a Berea sandstone and proposed by Oeren and
Bakke �14,15,27�. Their original network consists of nodes
linked with bonds representative of pores and throats. The
bonds have constant cross sections that are circular, rectan-
gular, or triangular. In our numerical model, the volume of
the nodes has been canceled, and the bonds have been elon-
gated so as to intersect on volumeless nodes. The topology
remains identical. The network used is of cubic shape with
3-mm-long sides. It is composed of 26 146 bonds and
Nnodes=12 349 nodes with coordination numbers ranging
from 1 to 19 with an average value of 4.2. The average
length of the bonds is �lij	=116 	m and the average value of
the equivalent radii ��Sij	=32 	m.

B. Advection-diffusion of particles in the Berea network

The first step of the model is the calculation of the mean
flow velocity in each bond as described in Sec. II A. The
calculations are done in this section with a macroscopic pres-
sure difference of 147 Pa corresponding to an average veloc-
ity of 0.25 mm/s, and an average Péclet number of 12. The
diffusion coefficient is set to D=2.4
10−9 m2 s−1.

The second step is the calculation of the first arrival time
distributions for each bond with the semianalytical expres-
sion given in the Appendix. Figure 2 shows the cumulative
first arrival time distribution �
0

t pij�t��dt�� for the five bonds
connected to one given node of the network. Note that, in the
absence of diffusion, every cumulative first arrival time dis-
tribution would be a step function, occurring at the time
needed for transport by the flow, that is, the ratio of the
length of the bond to the mean flow velocity in the bond.
Here, this parameter still plays a dominant role, and a sharp
increase in probability occurs at this value. The fraction of
particles going into each bond has a complex dependence on
flow rate, cross section, and length of the bond.

The third step of the model is the successive tracking of
particles from node to node, until the equilibrium of the
model is reached. Then measurements can be performed.

The trajectories of 50 000 particles are successively initi-
ated in the nodes.

Three different initial distributions were tested. The nu-
merical steady state is independent of the initial distribution.

Figure 3 shows the velocity �displacement during 0.1 s
divided by 0.1 s� along the flow direction averaged over all
the particles versus time. For all the initial distributions
tested, after a duration corresponding to 10 s a plateau is

reached, showing that the numerical model has relaxed. With
the formalism of Sec. II C, this means that the number of
particles that first arrive at node i per unit time ni�t� reached
their steady state value ni. At equilibrium, it is checked that
the flux of particles per time unit is a linear function of the
flow rate in each bond as expected at steady state for a sys-
tem with uniform concentration. The linear coefficient 2.4

104 particles/mm3 is the concentration of particles per unit
volume �Fig. 4�. It is checked that this is equal to the number
of particles tracked divided by the total volume of the bonds.

The last step is the calculation of the flow propagator after
the numerical relaxation described by Fig. 3 has taken place.

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

l
2
/u

2
= 0.08 s

l
3
/u

3
= 0.66 s 5

l
5
/u

5
= −0.2 s

l
4
/u

4
= 0.26 s

l
1
/u

1
= 0.16 s

4
2

3

1

FIG. 2. �Color online� Particles are input in one node of the
Berea network schematized in the inset. The mean velocity in the
network is 0.25 mm/s. The legend is the convection time, that, is
the ratio of the bond length to the bond velocity. The negative time
corresponds to a direction of flow entering the node. The cumula-
tive first arrival time distributions to cross the five throats connected
to the node are calculated.

10
−1

10
0

10
1

10
2

0.25

0.3

0.35

0.4

0.45

0.5

Elapsed Time (s)

M
ea

n
V

el
oc

ity
(m

m
/s

)
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C. Flow propagator in the Berea sandstone network

In this section, the results for the calculation of the flow
propagator in the network with a realistic topology are pre-
sented.

The tracking of the particles is the most computationally
intensive part of the algorithm. Thanks to the continuous
time random walk framework, the time required for these
calculations scales linearly in the number of particles being
used, and in the number of nodes visited per particles. The
number of particles selected for tracking should be sufficient
that the number of node visits after numerical relaxation
greatly exceeds the total number of nodes. A higher ratio of
node visits to total nodes increases the signal to noise ratio in
the resulting flow propagator. At a ratio of 100:1 a simple
running average filter is sufficient to eliminate most of the
noise. As an example, in the Berea network with 12 349
nodes, the tracking of 105 particles for a time corresponding
to 2 s after relaxation, at an average velocity of 1.25 mm/s
represents an average of about 150 visits per node, and a
computation time of the order of 1 h on a single processor.
�With simple random walk simulations, the time required for
equivalent calculation scales linearly in the number of par-
ticles and the number of time steps in every bond per par-
ticle. When a particle is trapped in a slow flow zone, the
computing time required becomes prohibitive. Thus random
walk simulations will be less efficient at dealing with a het-
erogeneous disordered medium.�

After the numerical relaxation, the trajectory of each par-
ticle is recorded as a list of nodes reached and time elapsed
for a total duration corresponding to 2 s. In order to avoid an
increase in the number of particles required for an accurate
calculation, the trajectories of the 105 particles recorded for a
duration of 2 s are used, and the propagator is calculated as
the correlation function of positions and time lapse �t=0.1
and 1 s.

Note that the trajectories recorded provide only the nodes
visited and the time elapsed between visits. The intermediate
positions in the bonds between the nodes are needed for the
calculation of the flow propagator. They are extrapolated by
assuming that the velocity during the hop from one node to

another is constant. Thus the trajectories consist of a continu-
ous description of the position of the particles. This linear
approximation will be discussed in Sec. IV.

Figures 5 and 6 show the flow propagator calculated for
velocities �v	=0.25, 1.25, and 3 mm/s, for �t=0.1 and 1 s.
Note that the displacements are normalized by the mean dis-
placement for clarity.

Qualitative features listed below that are observed experi-
mentally �1–4,7,8� or numerically �5,31� are successfully re-
produced in these figures.

For �t=0.1 s, the diffusion length is small ��D�t
�15 	m�. At low velocity �v	=0.25 mm/s, the effect of dif-
fusion can be observed and the left tail shows negative dis-
placement. Note that part of the left tail is due to bond ori-
entation. The long right tail evidences that some particles
followed faster paths. At an average velocity of �v	
=3 mm/s, two peaks are observed. The separation of two
peaks evidences the coexistence of slow or no flow zones
with higher velocity paths. Time is too short to allow diffu-
sion between those two zones. Note that there is no bump on
the right tail, as sometimes observed experimentally �5�. This
is due to the assumption of volumeless nodes �30�. At �t
=1 s, particles will diffuse over a length scale �D�t of the
order of half a bond. At high velocity, although it is less
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marked, there is a separate peak at z=0 showing that the time
is not sufficient to allow diffusion of particles out of slow
flow zones. At very long times, as the medium is periodic in
the direction of the flow, the particles will have totally
probed the porous space and the distribution will tend to a
Gaussian shape. The time needed for homogenization de-
pends on the disorder of the medium and spatial correlation
lengths; it is bounded by the time to diffuse over the cross
section of the sample, that is, the ratio of the cross section to
the diffusion coefficient �3750 s. �This time scale is not
measurable experimentally with NMR techniques.�

Note that this model describes only the spins that are ac-
tually detected, in other words, the particles represent the
spins that have not relaxed during the time �t of the mea-
surement. But the surface relaxation is faster than the bulk
relaxation. Thus spins that spend time in bonds with smaller
cross sections are more likely to relax. A correction to the
current model can be added to calculate the resulting effect
on the flow propagator.

We have provided here a method to calculate the flow
propagator, and have shown two simple examples of the cal-
culation. Systematic and quantitative comparison to experi-
mental data on consistent networks will be reported in later
presentations.

IV. DISCUSSION

Several assumptions were made to derive a simple ap-
proach. In this section, the limits of the model are detailed
and corrections to the model are proposed when possible. We
start with a technical point and then describe more general
assumptions.

In this presentation of the model, the flow in every bond is
described by a mean velocity. Depending on the case, this
assumption is either valid, or can be corrected, or cannot
hold. Let us consider a bond ij of cross section Sij, mean
velocity uij, and length lij. In a two-dimensional description,
the local Péclet number is defined as �lij =uij

�Sij /Dm. Dm is
the molecular diffusion �note that this definition differs from
the definition used previously in the one-dimensional de-
scription of the flow�. At low local Péclet numbers, transport
is dominated by diffusion, that is, the particles probe all the
flow lines of the cross section and thus have an equivalent
mean velocity. The approximation is valid and the model
does not need to be refined. At high local Péclet numbers,
advection by the flow dominates. If the particles spend in the
bond ij a time t�Sij /D, they spend enough time in the bond
to probe the cross section. Then, the dispersion is effectively
diffusive, with an effective diffusion coefficient Deffij
=Dm�1+�ij�lij

2 �, where �ij depends on the geometry of the
cross section �32�. The analytical formula for the calculation
of � as a function of the cross sectional shape can be found
in �33�. The time needed to cross the bond ij is t� lij /uij.
Thus the dispersion will be effectively diffusive when
�lij� lij /�Sij, the local Péclet number is smaller than the
aspect ratio of the bond. In that case, the model can be re-
fined by replacing the thermal diffusion coefficient D=Dm
with an effective diffusion coefficient for every bond D
=Deffij. Last, at high local Péclet numbers, if �lij� lij /�Sij is

not verified, the plug flow description in the bonds is not
valid.

Second, a central assumption of the model is the full mix-
ing at the nodes. A particle moves to a new bond indepen-
dently of the bond it just crossed, and its position in the cross
section of this bond. This assumption is common to most of
the porous network models mentioned �4,17,18,21,22�. But it
may be worth reconsidering revisiting it in light of compari-
sons with experiments.

Third, another common assumption of the models previ-
ously cited is volumeless nodes. Although their volumes do
not affect the topology of the network, this assumption will
prevent any quantitative comparison in a porous medium
where the nodes have a significant volume. With the struc-
ture of the model, it seems possible to add a specific descrip-
tion of the dynamics of the particles in the nodes. This will
be reported in a later presentation.

Fourth, when applying the method to the calculation of
the flow propagator, the intermediate position of particles
between nodes was linearly approximated. Diffusion will
cause particles to wander at the entrance of bonds that they
do not cross, and wander within the bonds that are crossed.
The efficiency of the continuous time random walk is due to
the fact that this wandering is not detailed and is simply
averaged in the distribution of times needed to go through
each bond. The linear approximation induces a bias when
trajectories are shorter that a bond length. Still, when consid-
ering an ensemble of particles distributed in bonds, it is a
reasonable estimation of the average displacement. If an ex-
act detailed expression is needed for very short distances or
times, a simple random walk is better adapted than the con-
tinuous time random walk. Note that this is a negligible ef-
fect when trajectories longer than a single bond length are
considered.

V. CONCLUSION

In this paper, we have presented an efficient method to
calculate the trajectories of particles subject to advection and
diffusion in disordered networks.

The method is computationally efficient and well adapted
to large and heterogeneous networks. It is general and can be
used for dispersion of passive or chemically active tracers in
heterogeneous porous media. In this paper, it is applied to the
calculation of the flow propagator in a network with a topol-
ogy extracted from Berea sandstone. Qualitative features ob-
served experimentally were reproduced. The domain of va-
lidity of the model and possible improvements are detailed in
Sec. IV. Further work is currently ongoing to compare the
calculated flow propagator with corresponding experimental
data. The model can then be a powerful tool to understand
the interplay between the structure of a porous medium and
the dispersion in it �34�.
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APPENDIX: INVERSE LAPLACE TRANSFORM
OF THE FIRST ARRIVAL TIME DISTRIBUTION

The first arrival time distribution for a particle crossing
bond ij was calculated in the Laplace domain as expressed in
Eq. �6�. Inverting the Laplace transform with standard gen-
eral methods is very time consuming and cannot be per-
formed for every bond if the size of the network is large. A
specific analysis of the FATD is proposed whereby an ap-
proximation is used in the real time domain that enables fast
computation.

The expression of p̃ij�s� in the Laplace domain reads

�̃ i
−1�s� = �

k=1

z

Sik
�ik

tanh��iklik�
�A1�

p̃ij�s� = Sij�̃i�s�
− �ij

e−�ij/2�sinh��ijlij��
�A2�

with �ij = �1/2D���uij
2 +4Ds�.

In the time domain, the first arrival time distribution for a
particle crossing bond ij is written

pij�t� =
1

2i


s0−i�

s0+i�

estp̃ij�s�ds , �A3�

where s0 is a real number greater than the real part of all the
poles of the function p̃ij.

The function p̃ij�s� is analytical in the complex plane ex-

cept at the poles yl, such that �̃i
−1�yl�=0. �It is checked that

p̃ij�s� is defined and differentiable for xn=−uij
2 /4Dl

−D�n / l�2 with n�Z+�.
Therefore the residues theorem is applied to calculate the

integral �A3� and invert the Laplace transform:

pij�t� = �
l=1

�

Res�yl� . �A4�

In the next section, the poles yl, l=1, . . . ,�, are identified.
Their residues are then calculated. Note that the sum con-
verges reasonably fast and can therefore be truncated to es-
timate the numerical expression of pij�t�.

Calculation of the poles

The function is analytical in the complex plane, but at the
poles yl, l=1, . . . ,�, such that

�̃ i
−1�yl� = 0, that is, �

k=1

z

Sik

�1/2D���uik
2 + 4Dyl�

tanh��lik/2D���uik
2 + 4Dyl��

= 0.

�A5�

We thus look for the roots of the complex function �i
−1�y�.

The function is a sum of functions of the type

f�y� =�
�u2 + 4Dy

tanh� l

2D
��u2 + 4Dy�� if y � −

u2

4D
,

�u2 + 4Dy

tan� l

2D
��u2 + 4Dy�� if y � −

u2

4D

.

�A6�

The function f is strictly monotonic and has poles in the real
space at xn=u2 /4Dl−D�n / l�2 with n�Z+

*. The limits of f
at each pole are such that

lim
y→xn

−
f�y� = + � and lim

y→xn
+
f�y� = − � . �A7�

The function � i
−1 is a sum of functions of type f . There-

fore it has an infinite number of poles xn
ij =uij

2 /4Dl
−D�n / l�2, with n�Z+

* and j� �1,z�. The poles are ordered
and labeled wn with n�Z+ �w0 is set to zero�. The function
� i

−1 is strictly monotonic in every interval �wn ,wn+1�, with
limits

lim
y→wn

+
� i

−1�y� = − � and lim
y→wn+1

−
� i

−1�y� = − � . �A8�

Each root yl of �i
−1 is bracketed by consecutive poles

wn ,wn+1. It is thus efficiently calculated with a standard gra-
dient method.

Calculation of the residues

The residues are calculated using the relation

Res�yl� =

−
1

2D
��uij

2 + 4Dyl�

e−�ij/2�sinh� 1

2D
��uij

2 + 4Dyl�lij��
eylt

�−1�yl��
.

�A9�

The first arrival time distribution to cross bond ij is then
calculated by summing the residues:

pij�t� = �
l=1

�

Res�yl� . �A10�

The convergence of the sum is fast, and generally requires a
limited number of terms. Still, it is more subtle for very short
times. Slower convergence can be worked out because it
occurs in ranges where pij is negligible.
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